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In this paper, we examine the relationship between noise in an electric circuit and three funda-
mental constants of nature. Using the Nyquist formula, we find a relation between the Johnson
noise and the resistance in the circuit. This leads to an estimate of Boltzmann’s constant kB . The
measurement of Johnson noise as a function of temperature gives another estimate of kB , and also
a measurement of the Celsius temperature of absolute zero. Finally, the measurement of shot noise
from a photodiode gives us a value for the charge of an electron e. Our results all gave the correct
order of magnitude for these constants, however, we were often several standard deviations off of
the accepted values. This lead us to conclude that there was some amount of systematic error in
our system that was unaccounted for in our measurements, and we discuss possible sources for this
error.

1. INTRODUCTION

Thermodynamics serves as a link connecting micro-
scopic properties of physical objects and the macroscopic
behavior of an ensemble of these objects. When the pre-
dictions of thermodynamics are applied to the physics of
conductors and circuits, we find a series of relationships
between the voltages observed in the circuit and several
fundamental constants. These relationships arise due to
two types of noise caused by thermal fluctuations in the
circuitry. The first type, Johnson noise, is present in any
circuit containing a finite resistance. The second type,
Shot noise, arises from discrete passages of charge carri-
ers, such as during the emissions of a photoelectron. In
the following experiments, we will describe techniques for
measuring these two types of noise, and discuss how they
relate to three fundamental constants: Boltzmann’s con-
stant kB , the Celsius temperature of absolute zero, and
the charge of the electron e.

2. JOHNSON NOISE

2.1. Theory

J. B. Johnson performed the first measurement of the
noise that arises from thermal fluctuations within a resis-
tor [1], and using the values obtained in these measure-
ments, Harry Nyquist provided a theoretical description
of Johnson noise. The formula obtained in Nyquist’s pa-
per [2] for the mean squared voltage arising due to ther-
mally induced currents in the frequency range fj and
fj + df is

dV 2
j = 4RkBTdf (1)

Nyquist arrived at this result as follows. The second
law of thermodynamics states that there can be no net
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transfer of heat between two systems in thermal equilib-
rium. Using this result, we can conclude that the power
transferred between two connected resistors due to ther-
mally induced currents must net to zero at any frequency,
regardless of the microscopic properties of the resistor.
This leads to the results that the voltage due to thermal
excitations can depend only on the system’s resistance,
temperature, and frequency of the current.

Next, we note that the energy of each mode of vibra-
tion has energy contained in the electromagnetic field
in, for example, the transmission line connecting the two
resistors. The Hamiltonian for the system will then con-
tain a term depending on the magnitude of the electric
and magnetic fields: (E2 + B2)/8π. We note that since
hf � kBT for our experiment, we need not consider a
quantum mechanical description of the thermodynamics
of the system. The equipartition theorem of thermody-
namics states that each term of the Hamiltonian that
depends only on the square of a canonical position or
momentum variable (i.e. E and B), contributes kBT/2
to the total internal energy of the system, allowing each
mode to contribute kBT to the internal energy. By cal-
culating the power transferred to the transmission line
using this expression for energy, we arrive at the result
given in Equation 1.

More generally, for a circuit with a resistor of resistance
R and a shunting capacitance C, circuit theory allows us
to conclude that the Nyquist formula becomes

dV 2 = 4RfkBTdf (2)

with

Rf =
R

1 + (2πfCR)2
(3)

2.2. Experimental Apparatus

A schematic of the experimental setup for Johnson
noise measurement is shown in Figure 1. A resistor is
attached to two alligator clips that protrude from the
Johnson noise box, and a metal beaker is used to shield
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the resistor from external electromotive forces during the
measurement. A switch connecting the circuit to an ohm-
meter allows for a measurement of the resistance. Dur-
ing the Johnson noise measurement, this connection is
switched off and the ohmmeter is disconnected to reduce
external noise. Another switch shorts the circuit to the
resistor, which allows us to distinguish between the mea-
surement of the Johnson noise of our resistor and the
intrinsic Johnson noise of the setup. The signal from
the resistor is fed into an SR560 low noise preamp which
serves as an amplifier of gain 500 and a high-pass fil-
ter with cutoff frequency of 1 kHz. The signal then en-
ters a Krohn-Hite Model 3988 programmable filter, which
serves as a low pass filter with cutoff at 50 kHz. The sig-
nal then enters the oscilloscope where we can measure
the Vrms.
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FIG. 2: Block diagram of the electronic apparatus for measuring Johnson noise.

FIG. 3: Block diagram of the electronic apparatus for calibrating the Johnson Noise experiment

FIG. 1: Diagram of the apparatus for measuring Johnson
noise. Image from [3].

In order to test the predictions of Nyquist’s theory of
Johnson noise, we need to know the gain as a function of
frequency of our band-pass filter, as well as the shunt-
ing capacitance seen by the resistor. The gain curve
is measured using a function generator to send signals
of different frequencies through the measurement chain.
The ratio of the input and output Vrms gives the gain
at that frequency. Figure 2 shows the gain squared as a
function of frequency. The measurement of the shunting
capacitance is straightforward, and we found a value of
C = 22.7± 1 pF.

When taking measurements, the Vrms measured will
be related to the Vrms produced by Johnson noise in the
resistor and the gain g(f) by

dV 2
meas = [g(f)]2dV 2 (4)

The orthogonality of each Fourier component of the sig-
nal allows us to integrate Equation 2 over the range of
our band-pass to obtain an expression for the total mean
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FIG. 2: Gain squared of the Johnson noise measurement
chain, with steep dropoffs at 1 kHz and 50 kHz.

squared voltage,

V 2 = 4RkBTG (5)

where

G =
∫ ∞

0

[g(f)]2

1 + (2πfCR)2
df (6)

2.3. Measurements

Our investigation of Johnson noise consists of measur-
ing the mean squared voltage for a variety of resistances,
which will yield an estimate of Boltzmann’s constant kB .
We also measure the dependence of the mean squared
voltage as a function of temperature, which not only pro-
vides another estimate of kB , but also gives the Celsius
temperature of absolute zero.

2.3.1. Vary resistance

We took measurements of the Johnson noise for 9 dif-
ferent resistors at room temperature T = 293 K. To iso-
late the noise produced by the resistor, we alternated
between measurements of with the resistor connected to
the circuit, and the resistor shorted. The mean squared
voltage due to the resistor is then given by V 2

r −V 2
s . Five

measurements were taken for each resistor to obtain an
estimation of the random error of the measurement.

In order to calculate G for a given resistance, we per-
formed a numerical integration of Equation 6 from 0.1
to 80 kHz. We used the trapezoidal method to calculate
the integral, which, as shown by Bevington and Robinson
[4], has a numerical error associated with each interval of
df
12h
′′(ξ), where h is the integrand, and ξ lies in the inter-

val f and f + df . Using finite difference approximations
of the second derivative, we found the numerical error to
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be 7 orders of magnitude less than the random errors of
the measurement, so for our purposes we were able to
treat the numerical integral as exact.

Our measurements allow us to solve Equation 5 for
kB for each resistor, and we obtained several values
for Boltzmann’s constant, each with an associated er-
ror. Taking a weighted mean that minimizes the resid-
uals over all the resistances, we found a value of kB =
1.21 ± 0.09 × 10−23 m2 kg s−2 T−1. This is within 2σ of
the accepted value of 1.38× 10−23.

2.3.2. Vary temperature

We also measured the dependence on temperature of
the Johnson noise of a single resistor with resistance
817 kΩ. A low temperature measurement at T= −196◦
C was made by submerging the resistor in a bath of liquid
nitrogen. Other measurements were made by putting the
resistor in a cylindrical oven, and monitoring the temper-
ature using a mercury glass thermometer. Ten measure-
ments were made at each temperature, again switching
between the shorted circuit and the resistor. Calculat-
ing G as before, we made a plot of temperature versus
V 2/4RG (Figure 3). A linear fit to this data gives an-
other estimate of kB , as well as an estimate of the Cel-
sius temperature of absolute zero, T0. We found values
of kB = 2.90± 0.12× 10−23 and T0 = −245◦ ± 12◦ C.
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FIG. 3: Measurement of Johnson noise as a function of tem-
perature. The linear fit shown in red has a slope of kB and
an x-intercept of T0.

Our measurement of absolute zero was 3σ higher than
the accepted value of -273, and the measurement of kB is
several standard deviations off. This indicates that there
is likely some systematic error that we are not account-
ing for. One explanation for this error is external noise
affecting our measurements, since this experiment is very
sensitive to the presence of an external electromagnetic
field.

3. SHOT NOISE

3.1. Theory

The noise due to the passage of a discrete charge car-
rier through the circuit is called shot noise. One example
of where it might arise is the emission of photoelectrons
in a circuit. The response of the circuit to a single photo-
electron is to create an initial spike in the current which
quickly settles back to the average current. Several of
these events combined create noise in the circuitry which
is related to the charge e the particle. Appendix C of
[3] provides a derivation of the formula of the current
created by shot noise, which is

d〈I2〉 = 2eIavedf (7)

Thus we see that the shot noise depends linearly on the
charge e of the particle. Thus, a measurement of the shot
noise of a system will allow us to calculate the charge of
an electron.

3.2. Experimental Apparatus

The apparatus for measuring shot noise is shown in
Figure 4. Within the photodiode box, a light bulb of ad-
justable intensity shines on the photodiode, which creates
a current of photoelectrons. The noise measured in this
current will be dominated by shot noise. The average DC
current is measured using a multimeter, and the signal
from the shot noise is amplified within the photodiode
box. It then passes through the same preamplifier and
band-pass chain as in the Johnson noise measurement,
with a gain set at 2000. The AC mean squared voltage
is then measured at the oscilloscope.
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FIG. 6: Diagram of the photo-diode and preamplifier circuit.
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FIG. 7: Block diagram of the experimental arrangement for
measuring shot noise.

ground, through the resistor, into the illuminated diode.
Set the multimeter to measure DC voltage and plug it
into the “first stage output” to measure the voltage RF I.
Leave the rest of the measurement chain just as it was
when you calibrated it.

There are two banana plug ports to measure the cur-
rent to the light bulb. It is a good idea to check the
current before you start. The current should change as
you adjust the potentiometer knob, but make sure that
the current does not exceede 300 mA to avoid damag-
ing the light bulb. If the switch is on and there isn’t a
change in current as you twist the knob, the light bulb
or the batteries are probably dead. Once you finish with
this check, it is a good idea to short the two ports to
reduce extraneous noise.

Record the RMS voltage from stage 2 and the DC volt-
age from stage 1 for various settings of the light bulb
knob. Many repeated measurements at each light inten-
sity will beat down the random errors.

10. ANALYSIS

Plot V 2
0 as a function of the combined quantity

2R2
F Iav

∫ ∞

0

g2(f)df (22)

From the slope of this line determine the charge on the
electron.

10.1. Possible Theoretical Topics

• The Nyquist theorem.

• Shot noise theory

Some useful references for this lab include [4–8].

11. EQUIPMENT LIST

Manufacturer Description URL

Agilent Oscillocope and Multimeters agilent.com

SRS SR560 Preamplifier thinksrs.com

Kron-Hite 8-Pole Band-Pass Filter kron-hite.com

Kay Precision Attenuator

[1] H. Nyquist, Phys. Rev. 32, 110 (1928).
[2] C. Kittel and H. Kroemer, Thermal Physics (Freeman,

New York, 1980).
[3] J. Johnson, Phys. Rev. 32, 97 (1928).

[4] F. Reif, Fundamentals of Stastistical and Thermal Physics
(McGraw-Hill, New York, 1965), chap. 15, pp. 582–587.

[5] H. C. Kittel, W.R. and R. Donnelly, Am. J. Phys. 46, 94
(1978).

FIG. 4: Block diagram for the shot noise apparatus.

As with the Johnson noise measurement, we calibrated
the measurement chain by finding the gain as a func-
tion of frequency of our measurement chain. Once again
a function generator was used to input a test signal a
known frequency into the photodiode box in order to
compute the gain g(f). The AC mean squared voltage
will then be given by

V 2
0 = 2eIaveR2

f

∫ ∞

0

[g(f)]2 df + V 2
A (8)

where Rf = 475 kΩ, and V 2
A represents other contribu-

tions to noise in the system.
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3.3. Measurement

By adjusting the current fed to the light bulb, we can
change the intensity of incident light on the photodiode,
and thus change the average DC current in the system.
For 12 different values of Iave we measured the root mean
squared voltage of the AC current coming from the pho-
todiode box. 10 measurements at each value of Iave were
taken in order to asses the random errors of the system.

Figure 5 shows a plot of the measured mean squared
voltages. The x-axis gives the quantity 2R2

fGIave, so that
the slope of a line fitted to the data will be e, the charge
of an electron. Here, G is the integral of the gain squared
over the range of the band-pass filter.
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FIG. 5: Plot of shot noise from a photodiode. The linear fit
shown in red has a slope of e.

The data yielded a value of e = 1.138± 0.032× 10−19

Coulombs, and the fit had a reduced chi squared of
χ2
ν = 0.3. This value for e differs from the accepted value

of 1.602×10−19 by 30%. As with the Johnson noise mea-
surement, it is likely external noise is interfering with the
measurement chain to introduce a systematic error that
is skewing our data.

4. CONCLUSIONS

In this experiment, we measured the two types of noise
that are inherent in any circuit. We examined the depen-
dence of Johnson noise on resistance, and using our mea-
surements were able to measure Boltzmann’s constant
to be kB = 1.21 ± 0.09 × 10−23 m2 kg s−2 T−1, which
is within two standard deviations of the accepted value.
Our measurement of Johnson noise as function of tem-
perature yielded gave kB = 2.90 ± 0.12 × 10−23 and the
Celsius temperature of absolute zero T0 = −245◦ ± 12◦
C, compared to the accepted value of −273◦ C. Finally,
our measurement of shot noise gave a measurement of
the charge of an electron to be e = 1.138± 0.032× 10−19

Coulombs, which is 30% off the accepted value of 1.602×
10−19.

The fact that all our measurements were of the correct
order of magnitude, but several standard deviations off
the accepted values indicates that there was a systematic
error present that we were not accounting for. This er-
ror likely arises from external electromagnetic fields, since
our apparatus is surrounded by computers and other elec-
tronics. Also, the measurements made in this experiment
are very sensitive to the configuration of the setup, and
change the position of cables can have an effect on the
measured noise. These effects combined may have caused
our data to have been slightly skewed.

[1] J. B. Johnson, Physical Review 32 (1928).
[2] H. Nyquist, Physical Review 32 (1928).
[3] J. Lab Staff, Johnson Noise and Shot Noise, MIT Depart-

ment of Physics (2010), lab guide.
[4] P. R. Bevington and D. K. Robinson, Data Reduction and

Error Analysis for the Physical Sciences (McGraw-Hill,
2003), 3rd ed.
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Johnson Noise and Shot Noise Determinations of kB, T0, and e
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We examine voltage noise arising from two stochastic processes in electrical systems. We verify
Nyquist’s theorem of voltage noise by measuring the amplified Johnson noise across a series of
coaxial-lead metal film resistors at a variety of temperatures, yielding Boltzmann’s constant kB =
(1.38± 0.06) × 10−23J · K−1 and absolute zero T0 = (−263.49± 35.0± 20.2)◦C. By characterizing
the shot-nose across a photodiode, we find the electron charge e = (1.59± 0.08)× 10−19C.

1. INTRODUCTION

Unwanted electrical fluctuations—noise—found in sig-
nals interferes with measurement accuracy and preci-
sion. Noise sources such as stray radio-frequency can
be controlled, while others arise from physically-inherent
stochastic fluctuations. Johnson noise quantifies the min-
imum mean-square voltage noise measurable from a sig-
nal source with a resistive impedance. Electric charge
quantization and its resulting current fluctuations gives
rise to shot noise[1].

We describe Johnson and shot noise as stochastic fluc-
tuations in a resistor. To confirm Nyquist’s Theorem,
we measured an amplified passband of the Johnson noise
power spectrum using a variety of resistors, from which
Boltzmann’s constant kB and absolute zero T0 are deter-
mined. The Butterworth frequency response of the am-
plification stage is characterized. We will also determine
electron charge e from the shot noise current fluctuations
through a photodiode[2].

2. THEORY

We investigate the noise voltage across a resistive
impedance arising from the random thermal motions of
its electrons. Noise can be represented by the spec-
tral density J+ (ω) associated with a stochastically-
fluctuating emf V (t)[3]:

〈V 2〉 =
∫ ∞

0

dωJ+ (ω) . (1)

The spectral density is calculated by treating a resis-
tor R0 as an ideal, one-dimensional transmission line with
characteristic impedance equal to R0, operating at ther-
mal equilibrium with temperature T . From the mean en-
ergy of a voltage wave propagating with frequency mode
ω in the transmission line, we have

J+ (ω) =
2
π

~ω

e~ω/kBT − 1
R (ω) , (2)

∗Electronic address: mookerji@mit.edu, cherder@mit.edu

where R (ω) is the effective resistance seen by R0 when
accounting for a shunt capacitance C:

R (ω) = Re (R0||ZC) =
R0

1 + (ωR0C)2
. (3)

In the high thermal limit with ~ω � kBT , the RHS
Equation 2 simplifies to (2/π) kBTR (ω), and we re-
cover Nyquist’s Theorem for the thermal noise across an
impedance with a resistive part:

〈V 2〉 =
2kBT

π

∫ ∞

0

dωR (ω) |Y (ω)|2 , (4)

where |Y (ω)| is voltage transfer function accounting for
signal gain and bandpass filtering needed to measure
micro-volt noise. We are interested in measuring this
noise to determine kB .

2.1. Shot Noise

Independent of thermal fluctuations, another source of
stochastic noise follows from the quantization of electric
charge. In this experiment’s photodiode circuit, photo-
excitation of electrons from a cathode creates a superpo-
sition of current events, each equal in magnitude to its
electric charge e, flowing to an anode.

Assuming that electron arrivals at a rate K are inde-
pendent of each other and therefore form a Poisson pro-
cess, the time-average of fluctuating current is given by
〈I〉 = Ke, and the average number of arrivals and vari-
ance for a random variable n in time interval τ is given
by Kτ . From Poisson statistics, the shot noise current is
given by

〈I2〉 = 〈∆I2〉 =
e〈I〉
τ

(5)

Applying Ohm’s law across a resistor R0 and relating the
average time interval τ to the filter bandpass, we have

V 2
0 =

eR2
0〈I〉
π

∫ ∞

0

dω |Y (ω)|2 . (6)

3. EXPERIMENTAL SETUP AND PROCEDURE

Block diagrams depicting the Johnson and shot noise
experiments can be found in Figures 1 and 2. Relevant

mailto:mookerji@mit.edu, cherder@mit.edu
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0.500-60.000kHz
2Vrms Sine Wave
Function Generator
Agilent 3310A

Johnson Noise
Johnson test box 

Switch

Amplifier Signal Chain 

PC LabView
7*10^6 Record Length

60dB Attenuator
Kay 637

Gain Calibration

Precision LCR Meter

Agilent34401A
Digital Multimeter

20 MHz NI DigitizerPAR113 Diff. Amp. 
10^4 Nominal Gain, AC

Bandpass Filter
1kHz-50kHz
Krohn-Kite 3BS8TB

FIG. 1: Johnson noise and calibration apparatus for a fixed
temperature and resistance. To increase precision in its sig-
nal averaging, the digitizer operates at the maximum 20MHz
signal integration and a 7 · 106 sample record length. House-
hold aluminum foil shields twisted, low-impedance coax ca-
bling and the test box. The shield, test box, and amplifier
are connected to grounding cable.

FIG. 2: Shot noise photodiode schematic. Voltage output
from this stage is a measure of average current through a
photodiode.

parameters applicable to both experiments are discussed
in detail with respect to the Johnson noise measurement,
followed by a discussion of the shot noise experiment.

3.1. Johnson Noise

We measure the voltage noise and resistances across
eight axial-lead, metal film resistors (50kΩ to 800kΩ)
mounted in alligator clips on a shielded aluminum test
box connected to an amplifier stage. These measure-
ments are repeated at thermal equilibrium with liquid ni-
trogen (77K), room-temperature ambient air (297.15K),
and ambient air (393.15K) heated by a 120V AC Variac-
controlled oven. It was not possible to measure the resis-
tor’s temperature directly without introducing additional
voltage noise and capacitive coupling, therefore temper-
ature was measured in the ambient media of the resis-

tor’s immediate vicinity using a toluene-filled glass ther-
mometer and a digital thermometer. Resistance and ca-
pacitance measurements at low temperatures were taken
quickly to inhibit capacitive charging. Lastly, frequency
response for the gain calibration (Section 4.1) is given by
the ratio of output and input RMS voltage for the ampli-
fier stage over a 0.500-60.000kHz logarithmic sweep. We
determine Boltzmann’s constant and an absolute tem-
perature scale with a re-expression of Equation 4,

〈V 2〉 = 4kBR0TG, (7)

where G is the effective noise bandwidth for a resistive
impedance R (ω).

Accurately measuring thermal noise require that volt-
age and current noise in the amplifier, ambient electrical
interference, and parasitic and shunt capacitance be min-
imized and accounted for. To determine amplifier noise,
imagine an ideal, noise-free amplifier in series with imag-
inary voltage and current sources at its input. The am-
plifier is battery-powered to minimize 60Hz line noise,
and source resistances are deliberately chosen to mini-
mize additional noise through the amplifier. Shorting the
resistor leads on the test box yields background voltage
noise VS in the amplifier chain. Assuming that sources
of voltage noise are statistically uncorrelated, measured
Johnson noise is given by V 2 = V 2

R − V 2
S , where V 2

R is
the measured noise across a resistor. Measured back-
ground voltage obtained in this manner consistently fell
between 11-13mVRMS for all temperatures, while volt-
age across the resistor ranged between 70-100mVRMS (at
393.15K)[4].

Ambient electrical interference and stray capacitance
are minimized through proper grounding, additional
shielding, and the use of low impedance cabling. Us-
ing the LCR meter on the multimeter ports on the test
box, we measure for each resistor the capacitance of coax
cabling through the open circuit, and the parasitic ca-
pacitance through its junction connection to the alliga-
tor clips. Measurements of the capacitance through the
open circuit also account for the input impedance (25pF,
100Ω) of the amplifier. Measured capacitance for each
resistor ranged from 35-55pF.

3.2. Shot Noise

The shot noise circuit circuit in Figure 2 features a
0.3µF DC–blocking capacitor (high-pass filter at 100Hz)
and an op-amp network with a nominal gain of 10. The
voltage noise from this network is connected to the same
amplifier stage (Figure 1) discussed previously. Fre-
quency gain of the amplification chain was characterized
at nominal gains of 1000 and 2000 by disconnecting the
photodiode and logarithmically sweeping a function gen-
erator through a test-input and measuring the RMS volt-
age from the second-stage output. As before, the photo-
diode and pre-amplifier stage were shielded and operated
in battery mode to minimize background voltage noise.
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FIG. 3: Gain calibration for 1kHz–50kHz bandpass filter. The
discrepancy from theory in the low-pass frequency rise is at-
tributed to manufacturer-specified 0.1dB error.

Background noise was subtracted off in quadrature
from measured photodiode voltage. For a 450kΩ resis-
tor at a nominal gain of 2000, background noise was ap-
proximately 160mVRMS and extrapolated shot-noise sig-
nal ranged between 2-20mVRMS. A fluctuating 1-5mV
noise was observed for these measurements, suggesting
either a resolution limitation at the digitizer, instability
from measuring light bulb current in its transition region,
instability in alkaline batteries as a power source, or ex-
traneous noise from the amplifier and ambient electrical
interference.

4. RESULTS AND ERROR ANALYSIS

Time variation of measurements, instrument uncer-
tainty, repeatability, and the inherent statistical random-
ness of our measured processes contribute to systematic
and random uncertainty in our error analysis for these
measurements. Johnson and shot noise are moments of
a random process of the electron. In the context of this
process, error is negligible, as the digitizer in the am-
plification chain ensemble averages over massive sample
sets (see caption of Figure 1). Uncertainty in voltage
(σV), capacitance (σC), and resistance (σR) measure-
ments were approximately 0.01mV-0.05mV, 0.0005nF,
and 0.05kΩ. Error in capacitance and resistance are
largely instrumental and also account for time variation
at low-temperature measurements. Temperature uncer-
tainty (σT) was approximately 3.5–5.5K, owing to phase
change in ambient media over the hour and the low-
precision of the toluene thermometer. Lastly, the manu-
facturer of our bandpass filter specifies a 0.1dB function
deviation (σBP) from theoretical behavior[5].
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4.1. Bandpass Filter Characterization

Johnson and shot noise are dependent on the frequency
response and gain of our amplification chain, which we
characterize here. The gain in our signal chain for a
frequency f = ω/2π and amplifier gain A0 is described by
an 8-pole Butterworth response approximately between
two corner frequencies fhigh and flow:

Y (f) =
A0√

1 +
(

fhigh
f

)8
√

1 +
(

f
flow

)8
(8)

Discounting resistive impedance in Equation 3, a plot of
measured gain and its associated 8-pole Butterworth re-
sponse is in Figure 3. Applying a Marquandt non-linear
regression in Mathematica, the amplifier gain is well-
characterized by Equation 8 (χ2

ν = 1.20), and the cor-
ner frequencies are given by fhigh = (50204.6± 210.0)Hz
and flow = (1015.63± 6.12)Hz. Equation 4 implies that
equivalent noise bandwidth is determined by integrating
over all frequencies. A real bandpass filter actually op-
erates within its specified corner frequencies, therefore
values of G used to determine kB in the following are
actually integrated from fhigh to flow. Integration errors
negligible compared to other systematic errors.

Propagated errors the gain calibration are determined
for the shot and Johnson measurements as,

σ2
Y = 4 |Y (ω)|2

(
σ2

in

V 2
in

+
σ2

out

V 2
out

)
+ σ2

BP, (9)

σ2
G = 4

(
|Y (ω)|2

1 + (ωR0C)2

)2(
σ2

Y 2

Y 4
+

σ2
R

R2
+

σ2
C

C2

)
. (10)

4.2. Measurement of Boltzmann Constant kB and
Absolute Zero

Figure 4 shows the results of plotting 〈V 2〉/4TG
against R0, from whose slope we can determine kB . Er-
rors from voltage measurements of noise and shorted
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noise add in quadrature to σ2
〈V 2〉

σ2
〈V 2〉
4GT

=
(
〈V 2〉
4GT

)2
(

σ2
〈V 2〉

〈V 2〉2
+

σ2
T

T 2
+

σ2
G

G2

)
. (11)

The experimentally determined value is Boltmann’s con-
stant is kB = (1.38± 0.06) × 10−23J · K−1, which
agrees excellently with the accepted NIST value of
1.3806504(24) × 10−23J · K−1 [6]. We expect that our
fit line (χ2

ν = 2.63) to have a y-intercept at 0 from Equa-
tion 7, however our measured y-intercept is given by
(2.76± 0.31) × 10−18Volts2/K, which indicates that ad-
ditional background voltage noise may not be accounted
for the quadrature interpolation of Johnson noise, and
that additional sources of noise (Johnson and shot noise)
may be correlated. Furthermore, note that 50kΩ outlier
may be attributed to an impedance mismatch between
the source resistor, amplifier, and coax cabling.

Figure 5 shows the results of plotting 〈V 2〉/4RG
against T for three resistors theoretically valued at
200kΩ, 500kΩ, and 800kΩ, from whose y-intercept we can
determine T0. Error from these points is calculated sim-
ilarly to Equation 11. Averaging the intercepts for the
three resistors, our experimentally determined value of
absolute zero is T0 = (−263.49± 35.0± 20.2)◦ C, which
agrees within experimental error of the accepted value
T0 = −273.15K [6]. As only three points are used for
each of these points, a χ2 test of confidence is omitted.

Note that a non-equilibrium temperature gradient be-
tween a resistor and the ambient environment may result
in a departure from the linear temperature dependence
of Johnson noise as predicted by Nyquist’s theorem. For
this reason, systematic error for each of our measure-
ments is larger than it would had it been possible to
take measurements thermally coupled to each resistor.
As temperature increases, it is more likely for the resis-
tor to approach thermal equilibrium with radiating metal

surfaces around it, such as the surface of the oven or
the alligator clips, and have an empirical temperature
consistently higher than the ambient temperature being
measured. Our noise measurements likely overestimated
the actual Johnson noise across each resistor for a given
temperature.

4.3. Shot Noise Determination of Electron Charge

To determine shot noise, we plot the adjusted shot-
noise voltage V/RfG against photoelectric voltage for a
nominal gain of 1000 (χ2

ν =1.32) and 2000 (χ2
ν =1.93),

determining the electron charge to e = (1.48± 0.05) ·
10−19C and e = (1.59± 0.08) · 10−19C. Repeated mea-
surements of the 1000 gain measurement yielded consis-
tently low values of e, suggesting that fluctuating back-
ground noise may be comparable in magnitude to our am-
plified shot-noise signal. Our measured value with 2000
gain is in excellent agreement with the accepted value of
1.602176487(40)×10−23C[6].

5. CONCLUSIONS

In summary, we have measured Boltzmann’s constant, absolute
zero, and the charge of the electron to within experimental error,
thereby validating Nyquist’s theory of voltage noise from thermal
motion of electrons and their quantization. The frequency-response
of the amplification chain used in this measurement was a well-
characterized Butterworth transfer function.

Our method indicates a number of improvements that future

students could make in order to obtain more accurate data. First,

measuring shunt and parasitic capacitance should take into account

capacitance inherent to the setup as well as that due to the resis-

tor and its junction connection to the test box. Second, measuring

the temperature in a thermally-coupled manner without introduc-

ing line noise or capacitive coupling is a hurdle that should be

addressed. Non-equilibrium behavior of resistors will likely cause

actual values of noise to be higher for a measured temperature.

Three simple solutions would mitigate these difficulties: first, the

use of a conductive platinum resistance thermometer; second, the

addition of a thermally stable oil (dibutyl phthalate, paraffin wax,

or silicone oil) to a heat bath; and third, to vacuum pump air out

of the oven and allow only for thermal transfer between the resistor

and oven surface.
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Johnson Noise
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Junior Physics Laboratory, Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
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An experiment was performed that determines the Boltz-
mann constant k and the centigrade temperature of abso-
lute zero by measuring the thermal noise of resistors. The
Nyquist theorem provides a quantitative relationship be-
tween the thermal electromotive force across a conductor
and its resistance and temperature. Measurement of the
root-mean-square RMS voltage for a variety of resistors at
a fixed temperature was used to calculate the Boltzmann
constant. The RMS voltage for a 22.5 kΩ resistor was mea-
sured over 300 degree temperature range. This latter data
extrapolated to zero centigrade gave an estimate of abso-
lute zero and provided an additional method for determining
the Boltzmann constant. The experimentally determined val-
ues of the Boltzmann constants, 1.37 ± 0.06 × 10−23 J/K &
1.363 ± 0.025 × 10−23 J/K, and the centigrade temperature
of absolute zero, −265.5± 6.9◦C, are in good agreement with
the accepted values.

I. INTRODUCTION

This paper is a full report on the junior lab experi-
ment: Johnson Noise. In this experiment, we study
the phenomenon of thermal (Johnson) noise as predicted
by the Nyquist Theory.

This report has been partitioned into sections accord-
ingly, each discussing a specific aspect of the experiment.
Section II discusses the theoretical background relevant
to the experiment by deriving the Nyquist Theorem using
two different approaches. The experimental apparatus
and details of its operation are discussed in section III.
Section IV presents the experimental results. Concluding
remarks are given in section V.

II. NYQUIST THEORY

Johnson Noise is the mean-square electromotive force
in conductors due to thermal agitation of the electro-
magnetic modes which are coupled to the thermal envi-
ronment by the charge carriers. The Nyquist Theory is
of great importance to experimental physics and in elec-
tronics. It gives a quantitative expression for the John-
son Noise generated by a system in thermal equilibrium
and is therefore needed in any estimate of the limiting
signal-to-noise ratio of an experimental apparatus. In
this section, the Nyquist theorem is derived in two ways:
first, following the original transmission line derivation,
and, second using microscopic arguments [1], [2].

A. Transmission Line Derivation

Consider two conductors each of resistance R at a tem-
perature T connected as depicted in Figure 1. Conductor
1 produces a current I in the circuit equal to the electro-
motive force due to thermal agitation divided by the total
resistance 2R. This current delivers power to conductor
2 equal to current squared times the resistance. By sym-
metry, one can deduce that the situation is reciprocal.
Conductor 2 produces a similar current which delivers
power to conductor 1. Because the two conductors are at
the same temperature, the second law of thermodynam-
ics dictates that the power flowing in both directions is
equal. I emphasize that no assumption about the nature
of conductors has been made.

1 2
R R

FIG. 1. Two conductors with equal resistance R.

It can be shown that this equilibrium condition holds
at any given frequency. Suppose there exists a frequency
interval ∆ν1 where conductor 1 receives more power than
it transmits. We then connect a non-dissipative network
with a resonance in the frequency interval ∆ν1 between
the two conductors (refer to Figure 2). Since the sys-
tem was in equilibrium prior to inserting the network, it
follows that after is insertion more power would be trans-
ferred from conductor 2 to conductor 1. However, as the
conductors are at the same temperature, this would vio-
late the second law of thermodynamics. The results we
have arrived at are important enough to merit summariz-
ing. By eminently reasonable theoretical arguments, we
can conclude that the electromotive force due to thermal
agitation in conductors are universal functions of (refer
to Figure 3):

• frequency ν

• resistance R

• temperature T

Experiments performed by Dr. J. B. Johnson in 1928
confirmed the formula which was later derived Dr. H.
Nyquist on purely theoretical grounds [3].

The derivation of the mean-square voltage 〈V 2〉 across
a conductor closely follows Nyquist’s original derivation.
The problem of determining a quantitative expression for
the thermal agitation (i.e. the mean-square voltage) of

1



1 2
R R

FIG. 2. Two conductors plus resonant circuit.

FIG. 3. Voltage-squared vs. resistance component for var-
ious types of conductors.

the conductor can be viewed as a simple one-dimensional
case of black-body radiation. Consider a lossless one-
dimensional transmission line of length L terminated at
both ends by conductors with resistance R. The trans-
mission line has been chosen to have a characteristic
impedance Z = R; consequently any voltage wave propa-
gating along the transmission line is completely absorbed
by the terminating resistor without any reflections. Volt-
age waves of the form V = V0 exp [i(kxx− ωt)] propagate
down the transmission line at velocity v = ω/kx. The
available number of modes can be calculated by impos-
ing the periodic boundary condition V (0) = V (L) on the
propagating voltage waves. The wave vector kx is related
to the length by the relation kxL = 2πn where n is any
integer. The density of modes is then,

D(ω) =
1

L

dn

dω

=
1

L

dn

dkx

dkx
dω

=
1

2πv
(1)

The mean energy per mode is given by the Planck for-
mula,

〈ε(ω)〉 =
h̄ω

exp h̄ω
kT − 1

(2)

〈ε(ω)〉 ≈ kT (3)

where in the last line we made use of the equipartition
theorem: in the classical limit, h̄ω ¿ kT , each squared
canonical term in the the Hamiltonian contributes 1

2
kT

to the mean energy.1

1 2

L

RR

Z=R

FIG. 4. Lossless transmission line Z = R of length L with
matched terminations.

The energy density per unit frequency U(ω) is then
given by the product of the density of modes and the
mean energy per mode:2

U(ω) = D(ω)〈ε(ω)〉

=
kT

2πv
(4)

The power per unit frequency is then simply:3

P (ω) = vU(ω)

=
kT

2π
(5)

OR

P (ν) = kT (6)

This is the power per unit frequency absorbed by the re-
sistor. By the principle of detailed balance this must be
equal to the power per unit frequency emitted by the re-
sistor. The thermal electromotive force generated by the
resistor sets up a current I = V/2R in the transmission
line. Thus, the power absorbed by the resistor at the
other end is

P (ν) = 〈I2(ν)〉R (7a)

=

〈
V 2(ν)

4R2

〉

R (7b)

=
〈V 2(ν)〉

4R
(7c)

Equating Eq. 6 to Eq. 7c and then solving for the
mean-square voltage per unit frequency gives:

〈V 2(ν)〉 = 4RkT (8)

By integrating the expression above over the accesible
frequency range, we arrive at the Nyquist Theorem:

〈V 2〉 = 4kTR∆ν (9)

1The Hamiltonian (per unit volume) for an electromagnetic
wave is given by H = 1

8π
(E2 +B2).

2U(ω) is a one-dimensional energy density.
3Recall that the energy density is equivalent to a force.
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B. Microscopic Derivation

Consider a conductor of resistance R with a charge car-
rier densityN having a relaxation time τc. The conductor
has length ` and cross-sectional area A. The voltage V
across the conductor is

V = IR (10a)

= RAj (10b)

= RANe〈u〉 (10c)

where I is the current, j is the current density, e is the
charge on an electron, and 〈u〉 is the drift speed along
the conductor.

Noting that NA` is the total number of electrons in
the conductor,

∑

i

ui = NA`〈u〉 (11)

Solving for 〈u〉 in Eq. 11 and substituting the resulting
expression into Eq. 10c gives,

V =
∑

i

Vi =
Re

`

∑

i

ui (12)

where ui and Vi are random variables.
The spectral density J(ν) has the property that in the

frequency interval ∆ν

〈V 2
i 〉 = J(ν)∆ν (13)

The correlation function can be written as

C(τ) = 〈Vi(t)Vi(t+ τ)〉 (14a)

= 〈V 2
i (t)〉 exp (−τ/τc) (14b)

where τ is an arbitrary time interval.
By substiting Eq. 14b and Eq. 12 into the Wiener-

Khintchine theorem Eq. 15a, the spectral density is

J(ν) = 4

∞∫

0

C(τ) cos (2πντ) dτ (15a)

= 4

(
Re

`

)2

〈u2〉

∞∫

0

exp(−τ/τc) cos (2πντ) dτ (15b)

= 4

(
Re

`

)2

〈u2〉
τc

1 + (2πντc)2
(15c)

≈ 4

(
Re

`

)2

〈u2〉τc (15d)

≈ 4

(
Re

`

)2(
kT

m

)

τc (15e)

where 〈u2〉 = kT/m by the equipartition theorem. Note
that for metals at room temperature τc < 10−13, thus
from the DC through the microwave range 2πντc ¿ 1.

Thus the mean-square voltage in the frequency range
∆ν equals:

〈V 2〉 = NA`〈V 2
i 〉 (16a)

= NA`J(ν)∆ν using Eq. 13 (16b)

= NA`4

(
Re

`

)2(
kT

m

)

τc∆ν using Eq. 15e (16c)

= 4

(
Ne2τc

m

)
A

`
R2kT∆ν (16d)

Using a result from conductivity theory σ = Ne2τc/m
and the elementary relation R = `

σA [5]:

〈V 2〉 = 4 σ
A

`
︸︷︷︸

1/R

R2kT∆ν (17)

We have once again arrived at the Nyquist Theorem:

〈V 2〉 = 4kTR∆ν (18)

The Nyquist Theorem is a special case of the general con-
nection existing between fluctuations (random variables)
and dissipation in physical systems. Brownian motion
lends itself to a similar analysis [6], [7].

III. EXPERIMENTS

This section describes the experimental apparatus
used, the calibration performed and the measurements
that were recorded.

A. Apparatus

Figure 5 is a diagram of the experimental apparatus
used to measure the Johnson Noise.4 An inverted beaker
shielded the resistor R which was mounted on the ter-
minal of the aluminum box. The resistor is connected
to the measurement chain through two switches (SW1
and SW2). A Hewlett-Packard HP54601A digital oscillo-
scope was used to measure the root-mean-square (RMS)
voltage generated by the resistor. Because the Johnson
Noise signals are in the microvolt range, a low-noise am-
plifier (PAR 113) was used to produce millivolt signals
detectable by the digital oscilloscope. A band-pass filter
(Krohn-Hite 3202R) was used to prevent thermal noise
outside the frequency range 1 KHz – 50 KHz from be-
ing amplified.5A Tektronix Function Generator (FG) 504

4Figure 5 was scanned-in from the junior lab guide [8].
5Signals outside this frequency range could not be properly
amplified by the PAR 113.
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provided sinusoidal calibration signals. The FG and the
Kay attenuator were used to calibrate the measurement
chain.

Several steps were taken to filter out extraneous noise
from the experimental apparatus. At all times the digi-
tal oscilloscope was kept at least five feet from the noise
source, otherwise the variable magnetic field from its
beam-control coil would produce undesirable electrical
oscillations in our noise measurements. Coaxial cables
were also kept as short as possible to keep minimize elec-
trical interference.

FIG. 5. Experimental apparatus.

B. Calibration of Measurement Chain

1. Test signal RMS voltage

The amplitude of the sinusoidal signal produced from
the FG was adjusted so that the RMS voltage VRMS as
measured on the digital oscilloscope was approximately 2
volts. The RMS voltage of the FG sinusoidal signal was
recorded over the range passed by the Krohn-Hite Filter
(refer to Figure 6). It was confirmed that the RMS volt-
age varied slightly over the frequency range of interest.

2. Gain of measurement chain

The sinusoidal test signal was fed through the Kay at-
tenuator set to 60 dB (1000) of attenuation to the ‘A’
input of the PAR amplifier (set to 1K) with ‘B’ input
grounded. The RMS voltages out of the Krohn-Hite fil-
ter were measured over a 100 kHz frequency range. The
gain squared [g(ν)]2 was small at very low frequency, then
drastically increased to unity around 5 kHz (refer to Fig-
ure 7). As expected at higher frequency (> 50 kHz) the
gain squared roll off considerably.
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V
)

Variation of test signal V
RMS

 with frequency

FIG. 6. RMS voltage VRMS produced by function generator
as a function of frequency.

C. Resistance Dependence of Johnson Noise

With the PAR amplifier set to 1K, typical RMS volt-
ages out of the Krohn-Hite filter were in the millivolt
range. The component of the noise VS not generated by
the resistor but by the amplifier itself was measured by:

1. Opening SW2.

2. Unplugging the connections to the ohmmeter and
temperature meter.

3. Shorting the resistor with SW1.

The total RMS voltage VR was measured with the short-
ing switch SW1 open. Because all the contributions to
the measure RMS voltage are statistically uncorrelated,
they add in quadrature. Thus, mean square Johnson noise
of the resistor is given by,

V ′2
Jo = V 2

R − V 2
S (19)

where VR and VS are the RMS voltages measured with
the SW1 open and closed, respectively. The resistance R
was measured using a digital multimeter after each noise
measurement.

D. Temperature Dependence of Johnson Noise

The Johnson noise of a 22.2 kΩ resistor was measured
at liquid N2 temperature −160◦C to 150◦C. High temper-
atures were obtained by mounting the inverted aluminum
box and placing it on a cylindrical oven. The tempera-
ture was adjusted by using a Variac. Low temperatures
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FIG. 7. Gain squared of measurement chain in the fre-
quency range (0.5 KHz – 100 kHz.) NOTE: The dotted line
is not a fitted function. Its purpose is tom emphasize a trend
in the gain squared. The gain squared has been normalized
such that the value of [g(ν)]2 = 1 corresponds to a gain of
1000.

were obtained by inverting the aluminum box and plac-
ing it on a liquid N2 filled dewar flask. The temperature
was varied in an ad-hoc manner by raising and lowering
the aluminum box into the dewar flask as needed.

IV. RESULTS AND DISCUSSION

The first subsection explicitly connects the Nyquist
Theorem with the experimental setup at hand. The last
two subsections describe the results of the subsections
III C & IIID, respectively.6

A. Derivation of RMS thermal voltage at the

terminal of an RC circuit

The resistor and coaxial cables that are connected to
the PAR amplifier can be modeled as the circuit depicted
in Figure 8. The equivalent circuit is composed of a fluc-
tuating thermal electromotive force VJo with an ideal re-

6Note that Boltzmann constant is calculated in the last two

subsections.

sistor R and a capacitor C in a simple lowpass filter con-
figuration.

C

R

V’Jo

VJo

FIG. 8. Equivalent circuit of the electromotive force across
a conductor of resistance R connected to the measuring device
with cables having capacitance C.

In sinusoidal steady state, impedances can be used to
treat the circuit as a voltage divider.

V ′

Jo =
(iωC)−1

(iωC)−1 +R
g(ω)VJo (20a)

=
1

1 + iωC
g(ω)VJo (20b)

The RMS thermal voltage is the magnitude of Eq. 20b:

V ′2
Jo =

[g(ν)]2V 2
Jo

1 + (2πνRC)2
(21)

The Johnson Noise is equation Eq. 21 summed over the
accessible frequencies,

V ′2
Jo = V 2

Jo

∞∫

0

[g(ν)]2

1 + (2πνRC)2

︸ ︷︷ ︸

G

dν (22)

In this experiment, the integral in Eq. 22 was numerical
evaluated using the data collected in the calibration of
the measurement chain (Figure 7). The capacitance C
was approximated at 60 pF from considerations of the
amount of coaxial cable used and its known capacitance
per unit length, 30.8 pF/feet. The Nyquist Theorem ex-
pressed in terms of the present variables is arrived at
by taking Eq. 9(or 18) and making the substitutions:
〈V 2〉 → V ′2

Jo and ∆ν → G.

V ′2
Jo = 4kTRG (23)

B. Determination of the Boltzmann Constant

The RMS voltage was measured for eight metal film
resistors (whose values ranged from 20 kΩ to 103 kΩ) at
room temperature. Figure 9 is a plot of V ′2

Jo against R.
The Boltzmann constant was calculated by solving for k
in Eq. 23. The experimentally determined value of the
Boltzmann constant, 1.37± 0.06× 10−23 J/K, is in good
agreement with the accepted value 1.38× 10−23 J/K.
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Jo.

C. Determination of the Absolute Zero on

Centigrade Scale

The RMS voltage for 22.2 kΩ resistor was measured
at fourteen temperatures ranging from ∼ −160◦C to
∼ 150◦C at approximate intervals of 25◦C Figure 10 is a
least-squares fit of V ′2

Jo/4RG vs. T . The slope of the line
gives the Boltzmann constant and the T -intercept is the
centigrade temperature of absolute zero. The Boltzmann
constant was determined to be 1.363±0.025×10−23 J/K
and centigrade temperature of absolute zero was extrapo-
lated to −265.5±6.9◦C. Both experimentally determined
values are in good agreement with their accepted values
of 1.38× 10−23 J/K and −273.15K, respectively.
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FIG. 10. Temperature dependence of Johnson Noise V ′
Jo.

V. CONCLUSIONS

Johnson Noise belongs to a broader category of
stochastic phenomena which have been of research in-
terest for decades. Measurement of the thermal noise
in resistors provided a means to calculate the Boltzmann
constant and the centigrade temperature of absolute zero.
Because there are inherent difficulties in measuring ther-
mal noise, the Boltzmann constant was measured to an
accuracy of ∼ 4 %.7 Alternate methods of implementing
a undergraduate physics experiment on Johnson Noise
are described in the literature (e.g. [9]).
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